
Mars Research Group: Kernel Isolation and Beyond

https://mars-research.github.io ➦

Ziyue Pan — https://pan-ziyue.github.io

October 31, 2022

Institution of Cyberspace Security Research, Zhejiang Unversity

https://mars-research.github.io
https://pan-ziyue.github.io

Table of Contents

1. Background

2. Research Project Review

3. Beyond Isolation: a Noob’s Perspective

4. Takeaway

1

Background

Modern operating system kernels need isolation

Rapid development Linux Kernel features over 70K commits a year.

Insecure kernel https:

//www.cvedetails.com/product/47/Linux-Linux-Kernel.html ➦

Enabled protection StackGuard [6], ASLR [16], DEP [20], SMAP 1, SMEP

Unused protection CPI [12], SafeStacks [4]

New attacks DOP [10], FUZE [24]

1https://lwn.net/Articles/517475

2

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://lwn.net/Articles/517475

Kernel isolation is challenging

Execution overhead: isolation brings extra overhead.

• Hardware-based isolation is not commodity design [21, 22, 23].

• Traditional address-spaces for isolation introduces huge overhead [7].

Decomposition complexity: shared-memory kernel introduces laborious efforts.

• Isolated subsystems: seL4 2, DCOM 3, FUSE 4

• Virtualized kernel [3, 5, 8, 14]

2https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
3https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom
4https://github.com/libfuse/libfuse

3

https://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom
https://github.com/libfuse/libfuse

Kernel isolation is not new

Table 1: Isolation mechanisms and overheads

Mechanisms Example Execution overhead

Segmentation and paging L4 [7], Nooks [19], SIDE [18] high

Cache-coherent cross-core invocations FlexSC [17], MultiKernel [2] high

Memory Protection Keys (MPKs) Hodor [9], libmpk [15] acceptable

EPT switching with VMFunc Hodor [9] acceptable

SFI and MPX MemSentry [11] high

Table 2: Decomposition complexity

Methodology Example Decomposition complexity

Clean slate designs microkernels high

Device driver frameworks and VMs IOKit high

Backward compatible code isolation LXFI [13] acceptable 4

Research Project Review

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

Cache-coherent cross-core invocations + Backward compatible code isolation

Contributions:

• (Execution overhead) asynchronous execution runtime.

• (Execution overhead) dedicated core + cross-core IPC.

• (Decomposition complexity) decomposition patterns + IDL (interface definition

language).

https://www.usenix.org/conference/atc19/presentation/narayanan ➦ 5

https://www.usenix.org/conference/atc19/presentation/narayanan

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev�>ndo_start_xmit()). The
dev�>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

Figure 1: LXDs architecture (isolated ixgbe network driver).
6

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev�>ndo_start_xmit()). The
dev�>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

Each LXD is developed as a loadable kernel module based on VT-x.
7

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev�>ndo_start_xmit()). The
dev�>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

Compatibility: ➅ glue code generated by IDL compiler and ➆ libLXD.
8

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev�>ndo_start_xmit()). The
dev�>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

➇ LXD microkernel creates and manages LXDs.
9

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev�>ndo_start_xmit()). The
dev�>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

➂ IDL compile generates klibLXD.
10

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev�>ndo_start_xmit()). The
dev�>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

272 2019 USENIX Annual Technical Conference USENIX Association

➁ Run-queue maintains async runtime; ➃ supports cross-core IPC.
11

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

IDL: generate glue code across domain boundaries from customized grammar.

https://gitlab.flux.utah.edu/xcap/lcds-idl ➦ 12

https://gitlab.flux.utah.edu/xcap/lcds-idl

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

dummy
net_device_ops

net_device

Linux
Kernel

Net

Glue code

Shadow Copies

register_netdevice()

register_netdevice()

net_device_ops

net_device

Remote reference

LXD

Figure 2: Private object hierarchies.

as function pointers, etc. To support implementation of decom-
position patterns, we develop a powerful IDL that generates
all inter-domain communication code.
Modules The IDL describes each subsystem as a module, i.e.,
a collection of functions exported and imported by an isolated
driver or the kernel. To illustrate decomposition patterns and
the design of the IDL, we consider an example of a minimal
dummy network device driver [44]. The following IDL is used
to define the dummy module.

include <net.idl>
module dummy() {

require net;
}

By itself the dummy module does not export any functions.
Instead it relies on the net interface provided by the kernel
to register itself with the kernel, i.e., register a collection of
function pointers that provide the driver-specific implemen-
tation of the network device interface. The kernel uses these
function pointers to invoke the isolated dummy device driver.

The require keyword instructs the IDL compiler to import
the net module into the context of the dummy module. At a
high level, the compiler is instructed to generate glue code
required for remote invocations of the functions exported by
the net module.

A typical network interface defines a collection of functions
that implement a specific kernel interface. For example, the
net module defines the interface of the network subsystem,
i.e., a collection of functions that allow network device drivers
to register with the kernel.

module net() {
rpc int register_netdevice(projection net_device ⇤dev);
rpc void ether_setup(projection net_device ⇤dev);
...

}

From the above module definition the IDL generates code
for caller stubs of the net interface so the isolated dummy
module can transparently invoke functions of the interface.
The IDL also generates the dispatch loops for both the dummy
LXD and kLXD so both isolated subsystem and non-isolated

kernel can process remote function invocations from each
other.
Data structures In LXDs, isolated device drivers and the ker-
nel do not share any state that might break isolation guarantees.
Instead, each isolated subsystem maintains its own private hi-
erarchy of data structures. In our example, the register_netdev()
function takes a pointer to the net_device data structure that
describes the network device. Since net_device is allocated in-
side the isolated dummy driver, a corresponding shadow copy
will be created by the glue code in the non-isolated kernel
(Figure 2).

The shadow hierarchies are synchronized upon function
invocations. LXDs provide support for transparent synchro-
nization of shadow data structure copies across domains with
the mechanism of projections. A projection explicitly defines
a subset of fields of the data structure that will be passed
to the callee and returned to the caller during the domain
invocation.2

projection <struct net_device> net_device {
unsigned int flags;
unsigned int priv_flags;
...
projection net_device_ops [alloc(caller)] ⇤netdev_ops;

}

Here, the projection net_device only lists the fields that will
be used by the non-decomposed code in the kernel to regis-
ter a network device. The projection omits the members of
struct net_device that are private to the LXD, e.g., pointers to
other data structures. The IDL supports lexical scopes, so the
same data structure can be projected differently by different
functions.

The IDL supports explicit [in] and [out] directional attributes
to specify whether each field is marshalled from caller to
callee or vice versa. In most cases, however, they are optional.
The IDL compiler can infer the default direction from the way
the projection is used in the code. In the example above, the
default direction is [in]—all fields of the projection are copied
from the caller to the callee side, which is decided based on
the [alloc(callee)] qualifier that we discuss below.
Allocation of shadow object copies When the
register_netdev() function is invoked by the LXD, the
callee side of the invocation, i.e., the non-decomposed
kernel, does not have a private version of the net_device data
structure. The IDL provides support for controlling when
remote objects are allocated, looked up, and freed with the
alloc, bind, and dealloc qualifiers. The alloc qualifier instructs
the IDL to allocate the new data structure of the projected
type, i.e., struct net_device. The callee attribute instructs the
IDL to perform the allocation on the callee side, as the data
structure already exists on the caller side. The allocation
attribute also serves as a hint to the compiler to marshal
all fields of the projection from the already existing data

2Hence defining how a data structure is projected into another domain.

USENIX Association 2019 USENIX Annual Technical Conference 273

Figure 2: Shadow objects in LXDs. 13

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

Case studies:

• (software) dummy network and multi-queue block

• (hardware) ixbge

Evaluation:

• async runtime overhead is small

• cross-core IPC is faster than same-core IPC

• (on ixbge TX) single thread: LXD is 12% faster; multi thread: LXD is only

6%-13% of native driver

• (on ixbge RX) single thread: LXD performs similarly; multi thread: LXD is only

12%-18% of native driver

14

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM Functions

EPT switching with VMFunc + Backward compatible code isolation

Contribution:

1. LVD: lightweight isolation (speed up LXD)

2. Isolation enforcement

• Data structure safety isolated driver can only access a well-defined subset of

objects and their fields

• Data structure integrity isolated driver cannot change pointers used by the kernel

or types of referenced objects.

• Function call integrity a) can only invoke a well-defined subset of kernel functions

and pass legitimate arguments; b) cannot trick the kernel into invocation of an

unsafe function pointer registered as part of the driver interface.

https://dl.acm.org/doi/abs/10.1145/3381052.3381328 ➦ 15

https://dl.acm.org/doi/abs/10.1145/3381052.3381328

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM FunctionsLightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

vmfunc_dispatch(*msg){
 ...
 case XMIT_FRAME:
 ixgbe_xmit_frame(...);
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

6
ndo_start_xmit(...) {
 ...
 vmfunc_send(channel, msg);
 ...
}
 VMFUNC

Trampoline

vmfunc
...

vmfunc

Isolated Ixgbe Driver

LXD Microkernel

Unmodified driver code

Memcpy, memory management,
microkernel interface, etc.)

Linux Kernel

send();

User Process

2

3

5

4

Glue Code

Hypervisor

EPTK EPTI

1

7

Glue Code

Figure 1. LVDs architecture.

work. Finally, speculative execution and side channel attacks
are out of scope of this work as well.

3.1 Overview of the LVDs Architecture
LVDs utilize hardware-assisted virtualization for isolation
and control of privileged instructions inside isolated domains
(Section 4). We execute the system under control of a mini-
mal late-launch hypervisor that transparently demotes the
system into a non-root VT-x guest right before it loads the
!rst isolated subsystem (Figure 1, 4). Speci!cally, we lever-
age a modi!ed version of the Bare"ank [1] hypervisor that
is loaded as a kernel module that pushes the system into a
VT-x non-root mode by creating a virtual-machine control
structure (VMCS) and a hierarchy of per-CPU extended page
tables. The hypervisor remains transparent to the mono-
lithic kernel, i.e., all exceptions and interrupts are delivered
directly to the demoted kernel through the original kernel in-
terrupt descriptor table (IDT). The demoted kernel can access
entire physical memory and I/O regions via the one-to-one
mappings in EPT.

LVDs run as a collection of isolated domains managed by
a small kernel module that exposes an interface of a micro-
kernel to the isolated domains (Figure 1, 3). When a new
isolated driver is created, the microkernel module creates
a new EPT (EPTI) that maps physical addresses of the dri-
ver domain. Upon cross-domain invocation the VMFUNC
instruction switches between EPTK and EPTI (we discuss
details of our implementation below in Section 3.3).

3.2 Device Driver Isolation
Isolation of kernel code requires analyzing all driver depen-
dencies, deciding the cut between the driver and the kernel,
and providing mechanisms for cross-domain calls and secure

synchronization of data structures that are no longer shared
between the isolated subsystems. LVDs rely on the LXDs
decomposition framework [72] that includes an interface def-
inition language (IDL) for specifying the interface between
kernel modules and generating code for synchronizing the
hierarchies of data structures across isolated subsystems.

In LXDs, isolated subsystems do not share any state that
might break isolation guarantees, e.g., pointers, indexes into
memory bu#ers, etc. Each isolated subsystem maintains a
private copy of each kernel object. To support synchroniza-
tion of object hierarchies across domains, the IDL provides
the mechanism of projections that describe how objects are
marshaled across domains. A projection explicitly de!nes a
subset of !elds of a data structure that is synchronized upon
domain invocation (hence, de!ning how a data structure is
projected into another domain).

De!nitions of cross-domain invocations can take projec-
tions as arguments. Passed as an argument, a projection
grants another domain a right to access a speci!c object, i.e.,
synchronize a subset of object’s !elds described by the pro-
jection. LXDs rely on the idea of capabilities that is similar to
object capability languages [67, 69], where capabilities are
unforgeable cross-domain object references. The IDL gen-
erates the code to re"ect the capability “grant” operation
by inserting an entry in a capability address space, CSpace,
the data structure that links capabilities to actual data struc-
tures. The capability itself is an opaque number that has no
meaning outside of a speci!c CSpace. Projections, therefore,
de!ne the minimal set of objects and their !elds accessible to
another domain. As projections may de!ne pointers to other
projections, LXDs provide a way to synchronize hierarchies
of objects. Finally, the IDL provides a way to de!ne remote

Figure 3: LVD architecture (isolated ixgbe network driver). 16

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM FunctionsLightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

vmfunc_dispatch(*msg){
 ...
 case XMIT_FRAME:
 ixgbe_xmit_frame(...);
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

6
ndo_start_xmit(...) {
 ...
 vmfunc_send(channel, msg);
 ...
}
 VMFUNC

Trampoline

vmfunc
...

vmfunc

Isolated Ixgbe Driver

LXD Microkernel

Unmodified driver code

Memcpy, memory management,
microkernel interface, etc.)

Linux Kernel

send();

User Process

2

3

5

4

Glue Code

Hypervisor

EPTK EPTI

1

7

Glue Code

Figure 1. LVDs architecture.

work. Finally, speculative execution and side channel attacks
are out of scope of this work as well.

3.1 Overview of the LVDs Architecture
LVDs utilize hardware-assisted virtualization for isolation
and control of privileged instructions inside isolated domains
(Section 4). We execute the system under control of a mini-
mal late-launch hypervisor that transparently demotes the
system into a non-root VT-x guest right before it loads the
!rst isolated subsystem (Figure 1, 4). Speci!cally, we lever-
age a modi!ed version of the Bare"ank [1] hypervisor that
is loaded as a kernel module that pushes the system into a
VT-x non-root mode by creating a virtual-machine control
structure (VMCS) and a hierarchy of per-CPU extended page
tables. The hypervisor remains transparent to the mono-
lithic kernel, i.e., all exceptions and interrupts are delivered
directly to the demoted kernel through the original kernel in-
terrupt descriptor table (IDT). The demoted kernel can access
entire physical memory and I/O regions via the one-to-one
mappings in EPT.

LVDs run as a collection of isolated domains managed by
a small kernel module that exposes an interface of a micro-
kernel to the isolated domains (Figure 1, 3). When a new
isolated driver is created, the microkernel module creates
a new EPT (EPTI) that maps physical addresses of the dri-
ver domain. Upon cross-domain invocation the VMFUNC
instruction switches between EPTK and EPTI (we discuss
details of our implementation below in Section 3.3).

3.2 Device Driver Isolation
Isolation of kernel code requires analyzing all driver depen-
dencies, deciding the cut between the driver and the kernel,
and providing mechanisms for cross-domain calls and secure

synchronization of data structures that are no longer shared
between the isolated subsystems. LVDs rely on the LXDs
decomposition framework [72] that includes an interface def-
inition language (IDL) for specifying the interface between
kernel modules and generating code for synchronizing the
hierarchies of data structures across isolated subsystems.

In LXDs, isolated subsystems do not share any state that
might break isolation guarantees, e.g., pointers, indexes into
memory bu#ers, etc. Each isolated subsystem maintains a
private copy of each kernel object. To support synchroniza-
tion of object hierarchies across domains, the IDL provides
the mechanism of projections that describe how objects are
marshaled across domains. A projection explicitly de!nes a
subset of !elds of a data structure that is synchronized upon
domain invocation (hence, de!ning how a data structure is
projected into another domain).

De!nitions of cross-domain invocations can take projec-
tions as arguments. Passed as an argument, a projection
grants another domain a right to access a speci!c object, i.e.,
synchronize a subset of object’s !elds described by the pro-
jection. LXDs rely on the idea of capabilities that is similar to
object capability languages [67, 69], where capabilities are
unforgeable cross-domain object references. The IDL gen-
erates the code to re"ect the capability “grant” operation
by inserting an entry in a capability address space, CSpace,
the data structure that links capabilities to actual data struc-
tures. The capability itself is an opaque number that has no
meaning outside of a speci!c CSpace. Projections, therefore,
de!ne the minimal set of objects and their !elds accessible to
another domain. As projections may de!ne pointers to other
projections, LXDs provide a way to synchronize hierarchies
of objects. Finally, the IDL provides a way to de!ne remote

➃ Modified Bareflank hypervisor [1] demotes kernel into non-root VT-x guest (EPTk). 17

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM FunctionsLightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

vmfunc_dispatch(*msg){
 ...
 case XMIT_FRAME:
 ixgbe_xmit_frame(...);
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

6
ndo_start_xmit(...) {
 ...
 vmfunc_send(channel, msg);
 ...
}
 VMFUNC

Trampoline

vmfunc
...

vmfunc

Isolated Ixgbe Driver

LXD Microkernel

Unmodified driver code

Memcpy, memory management,
microkernel interface, etc.)

Linux Kernel

send();

User Process

2

3

5

4

Glue Code

Hypervisor

EPTK EPTI

1

7

Glue Code

Figure 1. LVDs architecture.

work. Finally, speculative execution and side channel attacks
are out of scope of this work as well.

3.1 Overview of the LVDs Architecture
LVDs utilize hardware-assisted virtualization for isolation
and control of privileged instructions inside isolated domains
(Section 4). We execute the system under control of a mini-
mal late-launch hypervisor that transparently demotes the
system into a non-root VT-x guest right before it loads the
!rst isolated subsystem (Figure 1, 4). Speci!cally, we lever-
age a modi!ed version of the Bare"ank [1] hypervisor that
is loaded as a kernel module that pushes the system into a
VT-x non-root mode by creating a virtual-machine control
structure (VMCS) and a hierarchy of per-CPU extended page
tables. The hypervisor remains transparent to the mono-
lithic kernel, i.e., all exceptions and interrupts are delivered
directly to the demoted kernel through the original kernel in-
terrupt descriptor table (IDT). The demoted kernel can access
entire physical memory and I/O regions via the one-to-one
mappings in EPT.

LVDs run as a collection of isolated domains managed by
a small kernel module that exposes an interface of a micro-
kernel to the isolated domains (Figure 1, 3). When a new
isolated driver is created, the microkernel module creates
a new EPT (EPTI) that maps physical addresses of the dri-
ver domain. Upon cross-domain invocation the VMFUNC
instruction switches between EPTK and EPTI (we discuss
details of our implementation below in Section 3.3).

3.2 Device Driver Isolation
Isolation of kernel code requires analyzing all driver depen-
dencies, deciding the cut between the driver and the kernel,
and providing mechanisms for cross-domain calls and secure

synchronization of data structures that are no longer shared
between the isolated subsystems. LVDs rely on the LXDs
decomposition framework [72] that includes an interface def-
inition language (IDL) for specifying the interface between
kernel modules and generating code for synchronizing the
hierarchies of data structures across isolated subsystems.

In LXDs, isolated subsystems do not share any state that
might break isolation guarantees, e.g., pointers, indexes into
memory bu#ers, etc. Each isolated subsystem maintains a
private copy of each kernel object. To support synchroniza-
tion of object hierarchies across domains, the IDL provides
the mechanism of projections that describe how objects are
marshaled across domains. A projection explicitly de!nes a
subset of !elds of a data structure that is synchronized upon
domain invocation (hence, de!ning how a data structure is
projected into another domain).

De!nitions of cross-domain invocations can take projec-
tions as arguments. Passed as an argument, a projection
grants another domain a right to access a speci!c object, i.e.,
synchronize a subset of object’s !elds described by the pro-
jection. LXDs rely on the idea of capabilities that is similar to
object capability languages [67, 69], where capabilities are
unforgeable cross-domain object references. The IDL gen-
erates the code to re"ect the capability “grant” operation
by inserting an entry in a capability address space, CSpace,
the data structure that links capabilities to actual data struc-
tures. The capability itself is an opaque number that has no
meaning outside of a speci!c CSpace. Projections, therefore,
de!ne the minimal set of objects and their !elds accessible to
another domain. As projections may de!ne pointers to other
projections, LXDs provide a way to synchronize hierarchies
of objects. Finally, the IDL provides a way to de!ne remote

When a new isolated driver is created, ➂ LXD microkernel creates a new EPTi . 18

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM FunctionsLightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

vmfunc_dispatch(*msg){
 ...
 case XMIT_FRAME:
 ixgbe_xmit_frame(...);
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

6
ndo_start_xmit(...) {
 ...
 vmfunc_send(channel, msg);
 ...
}
 VMFUNC

Trampoline

vmfunc
...

vmfunc

Isolated Ixgbe Driver

LXD Microkernel

Unmodified driver code

Memcpy, memory management,
microkernel interface, etc.)

Linux Kernel

send();

User Process

2

3

5

4

Glue Code

Hypervisor

EPTK EPTI

1

7

Glue Code

Figure 1. LVDs architecture.

work. Finally, speculative execution and side channel attacks
are out of scope of this work as well.

3.1 Overview of the LVDs Architecture
LVDs utilize hardware-assisted virtualization for isolation
and control of privileged instructions inside isolated domains
(Section 4). We execute the system under control of a mini-
mal late-launch hypervisor that transparently demotes the
system into a non-root VT-x guest right before it loads the
!rst isolated subsystem (Figure 1, 4). Speci!cally, we lever-
age a modi!ed version of the Bare"ank [1] hypervisor that
is loaded as a kernel module that pushes the system into a
VT-x non-root mode by creating a virtual-machine control
structure (VMCS) and a hierarchy of per-CPU extended page
tables. The hypervisor remains transparent to the mono-
lithic kernel, i.e., all exceptions and interrupts are delivered
directly to the demoted kernel through the original kernel in-
terrupt descriptor table (IDT). The demoted kernel can access
entire physical memory and I/O regions via the one-to-one
mappings in EPT.

LVDs run as a collection of isolated domains managed by
a small kernel module that exposes an interface of a micro-
kernel to the isolated domains (Figure 1, 3). When a new
isolated driver is created, the microkernel module creates
a new EPT (EPTI) that maps physical addresses of the dri-
ver domain. Upon cross-domain invocation the VMFUNC
instruction switches between EPTK and EPTI (we discuss
details of our implementation below in Section 3.3).

3.2 Device Driver Isolation
Isolation of kernel code requires analyzing all driver depen-
dencies, deciding the cut between the driver and the kernel,
and providing mechanisms for cross-domain calls and secure

synchronization of data structures that are no longer shared
between the isolated subsystems. LVDs rely on the LXDs
decomposition framework [72] that includes an interface def-
inition language (IDL) for specifying the interface between
kernel modules and generating code for synchronizing the
hierarchies of data structures across isolated subsystems.

In LXDs, isolated subsystems do not share any state that
might break isolation guarantees, e.g., pointers, indexes into
memory bu#ers, etc. Each isolated subsystem maintains a
private copy of each kernel object. To support synchroniza-
tion of object hierarchies across domains, the IDL provides
the mechanism of projections that describe how objects are
marshaled across domains. A projection explicitly de!nes a
subset of !elds of a data structure that is synchronized upon
domain invocation (hence, de!ning how a data structure is
projected into another domain).

De!nitions of cross-domain invocations can take projec-
tions as arguments. Passed as an argument, a projection
grants another domain a right to access a speci!c object, i.e.,
synchronize a subset of object’s !elds described by the pro-
jection. LXDs rely on the idea of capabilities that is similar to
object capability languages [67, 69], where capabilities are
unforgeable cross-domain object references. The IDL gen-
erates the code to re"ect the capability “grant” operation
by inserting an entry in a capability address space, CSpace,
the data structure that links capabilities to actual data struc-
tures. The capability itself is an opaque number that has no
meaning outside of a speci!c CSpace. Projections, therefore,
de!ne the minimal set of objects and their !elds accessible to
another domain. As projections may de!ne pointers to other
projections, LXDs provide a way to synchronize hierarchies
of objects. Finally, the IDL provides a way to de!ne remote

➁ A call-gate page with VMFunc instructions is mapped in both EPTs. 19

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM Functions

Security invariants:

1. Virtual address spaces of isolated domains, kernel, and user processes do not

overlap.

2. Isolated domains have read-only access to their page table.

3. Physical address spaces of isolated domains and the kernel must not overlap.

4. Access to sensitive state is mediated by the hypervisor.

5. General, segment, and extended state (x87 FPU, SSE, AVX, etc.), registers are

saved and restored on domain crossings.

20

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM FunctionsVEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

we maintain a counter to count nested invocations of the
isolated subsystem.

4.1 Exitless Interrupt Handling
Historically, lack of hardware support for !ne-grained assign-
ment of interrupts across VMs and hypervisor required mul-
tiple exits into the hypervisor on the interrupt path [39, 86].
ELI [39] and DID [86] developed mechanisms for exitless de-
livery of interrupts for hardware-assisted VMs. We develop
an exitless scheme that allows LVDs to handle interrupts
even when execution is preempted inside an isolated domain.

At a high level, LVDs allow delivery of interrupts through
the interrupt descriptor table (IDT) of the non-isolated kernel.
The IDT is mapped inside both kernel and isolated domains.
When interrupt is delivered we switch back to the kernel
EPT early in the interrupt handler. To ensure that interrupt
delivery is possible, we map the IDT, global descriptor table
(GDT), task-state segment (TSS), and interrupt handler tram-
polines on both EPTK and EPTI . Upon interrupt transition
the hardware takes the normal interrupt delivery path, i.e.,
saves the state of the currently executing thread on the stack,
locates the interrupt handler through the IDT, and jumps to
it. The interrupt handler trampoline checks if the execution
is still inside the LVD, and performs a VMFUNC transition
back to the kernel if it’s required.

While conceptually simple, the exitless interrupt deliv-
ery scheme requires careful design in the face of possible
isolation attacks.

Interrupt Stack Table (IST) Both non-isolated kernel and
LVDs execute with the privileges of ring 0. As privilege
level does not change during the interrupt transition, the
traditional interrupt path does not require change of the
stack, i.e., the hardware saves the trap frame on the stack
pointed by the current stack pointer. This opens a possibility
for a straightforward attack: an LVD can con!gure the stack
to point to a writable kernel memory in the kernel domain,
and perform a VMFUNC transition back into the kernel
through one of the trampoline pages. VMFUNC is a long-
running instruction, and often interrupts are delivered right
after the VMFUNC instruction completes1. The interrupt
will be delivered inside the kernel domain and hence will
overwrite the kernel memory pointed by the stack pointer
register con!gured by the isolated domain.

To prevent this attack, and to make sure that an interrupt
is always executed on a valid stack, we rely on Interrupt
Stack Table (IST) [5]. The IST allows one to con!gure the
interrupt handler to always switch to a precon!gured new
stack even if the privilege level remains unchanged. Each
IDT entry has 8 bits to specify one of the seven available
IST stacks. Linux already uses ISTs for NMIs, double-fault,
debug, and machine-check exceptions.
1We empirically con!rmed this with perf, a pro!ler tool that relies on
frequent interrupts from the hardware performance counter interface.

EPTK = true
gs_base
kernel_esp

EPTK = true
gs_base
kernel_esp

EPTK = false
gs_base
kernel_esp

EPTK = false

int_handler
 if(!in_kernel())
 VMFUNC
 ...
 switch_stack()
 do_IRQ()
 ...
 if(...)
 switch_stack()
 VMFUNC
 iret

EPTI
and EPTK

EPTK

EPTI

IST
Stacks

(per-CPU)

TSS
(per-CPU)

do_IRQ(){

 ...
}

Kernel
Stack

EPTK = true
gs_base
kernel_esp

VMFUNC
State Page
(Read-only)

VMFUNC
State Page
(per-CPU)

IDT

IST#1

IST#6

IST#1

IST#6

IST#1

IST#6

Figure 4. Data-structures involved in interrupt transition

To protect the kernel from a rogue stack interrupt attack,
we con!gure two additional IST stacks for execution of syn-
chronous exceptions and asynchronous interrupts (Figure 4).
Upon an interrupt the hardware switches to a fresh IST stack.
We use the IST stack inside a small interrupt handler tram-
poline that is mapped in both kernel and isolated domains.
The trampoline checks whether the system is running inside
the kernel or in one of the isolated domains. It switches to
EPTK if needed, securely restores the system’s state by using
the information from the vmfunc_state_page page (we restore
the gs register used by the kernel to maintain per-CPU data
structures, and the stack pointer register that points to the
kernel stack). After that we copy the saved interrupt frame
to the normal kernel stack and continue execution of the
interrupt handler through the normal kernel path. Note that
the kernel can re-enable interrupts at this point, as the IST
stack is no longer used for the current interrupt. Upon exit
we check whether the switch back to LVD is required. If
yes the handler copies the exception frame back to the IST
stack (since only the IST stack is mapped inside the LVD),
switches back to EPTI , and returns from the interrupt with
the regular iret instruction.

We con!gure all interrupt handlers to disable subsequent
interrupts upon interrupt transition—this ensures that IST
stack will not be overwritten until we copy out the interrupt
frame onto the normal kernel stack. Anytime during pro-
cessing of the interrupt a non-maskable interrupt (NMI) can
be delivered. We con!gure a separate IST stack for the NMI
to prevent overwriting the state of the previous interrupt
frame on the IST.

To reliably detect whether the interrupt handler is run-
ning inside the kernel or inside an LVD we rely on the
vmfunc_state_page that is mapped by both EPTK and EPTI . In-
side the kernel the state page has a "ag set to true. This "ag
is false in the page mapped by EPTI .

Figure 4: Exitless interrupt handling. 21

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM Functions

Case studies:

• (software) dummy network and null block

• (hardware) ixbge

Evaluation:

• Phoronix test suite: 1% - 5% overhead (demoted kernel)

• (on dummy network TX) multi thread: 88% of native performance

• (on ixbge TX) single thread: LVD is 5% slower; multi thread: LVD is on par with

native

22

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating System

Language-based system + Clean slate designs

Contributions:

• Fault isolation.

• RedLeaf OS, RV6 (POSIX interface), ixgbe driver and NVMe driver.

https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram ➦,

https://pan-ziyue.github.io/slides/redleaf.pdf ➦ 23

https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://pan-ziyue.github.io/slides/redleaf.pdf

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating SystemArchitecture

Microkernel

Ixgbe
Driver
Trusted
crate

NVMe
Driver
Trusted
crate

Proxy

Shared Heap

Proxy

RedLeaf
User

rv6 Core

rv6
User

Proxy

FS

Proxy Proxy

Net

rv6
User

rv6

Co
mp

il
er

-e
nf

or
ce

d
pr

ot
ec

ti
on

 d
om

ai
ns

RRef

9

Figure 5: RedLeaf architecture 24

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating System

Fault isolation principles:

• Heap isolation: domains never hold pointers into private heaps of other domains.

• Exchangeable types: types that have no pointers to private heap.

• Ownership tracking: track ownership of all objects on the shared heap.

• Interface validation: IDL enforces cross-domain interfaces.

• Cross-domain call proxying: IDL generates cross-domain invocation proxies.

Summary: transfer Rust semantic to OS level.

25

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating SystemHeap Isolation

fn foo(obj1: Object1,
 obj2: RRef<T>) {
 call_other(obj1, &obj2);
}

fn bar(....) {
 do_work(&obj1, &obj2);

}

Domain Foo Domain Bar

Private Heap Private Heap

X

Shared Heap
RRef<T>

• Domains never hold pointers into other domains

• Special shared heap for passing objects between domains

11

Figure 6: Heap isolation. 26

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating SystemExchangeable types

fn foo(obj1: Object1,
 obj2: RRef<T>) {
 call_other(obj1, &obj2);
}

Domain Foo

Shared Heap

Private Heap

RRef<T> RRef<T>

X

X

Object

• Objects in shared heap can only be exchangeable types

• Cannot point to normal pointers in shared heap or private heap

12

Figure 7: Exchangeable types.
27

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating SystemOwnership tracking

X

fn proxy_bar() {
 domain_id = x;
 borrow_cnt = y;
}

fn foo(obj1: RRef<T>,
 obj2: Object2) {
 call_other(obj1, &obj2);
}

fn bar(....) {
 do_work(&obj1, &obj2);

}

Domain Foo Domain Bar

Shared Heap

Private Heap

struct RRef<T> {
 domain_id: u32,
 borrow_cnt: u32
 data_ptr: *mut T
}

Trusted Proxy

• RRef<T>’s can be passed between domains
• Metadata keeps track of owner domain and ref count
• Mediated through trusted proxies

13

Figure 8: Ownership tracking. 28

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating SystemCross-domain call proxying

X

fn proxy_bar() {
 is_alive();
 create_cont();
 domain_id = x;
 borrow_cnt = y;
}

fn foo(obj1: RRef<T>,
 obj2: Object2) {
 call_other(obj1, &obj2);
}

fn bar(....) {
 do_work(&obj1, &obj2);

}

Domain Foo Domain Bar

Shared Heap

Private Heap

struct RRef<T> {
 domain_id: u32,
 borrow_cnt: u32
 data_ptr: *mut T
}

Trusted Proxy

• Checks if domain is alive
• Creates continuation
• Moves ownership of all RRef<T>

15

Figure 9: Cross-domain call proxying. 29

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating System

Device driver Recovery

fn bar(....) {
 do_work(&obj1, &obj2);

}

Domain Foo

Domain Bar

Private Heap

Trusted Proxy

fn proxy_bar() {
 check_if_alive();
 create_cont();
 return Err(..);
}

fn foo(obj1: Object1, obj2: RRef<T>) {
 call_other(obj1, &obj2);
}

Shadow domain

fn bar() {

 replay_init();
}

• Support transparent device driver recovery

• Wraps the interaface to expose an identical interface

• Interposes on all communication

18

Figure 10: Device driver recovery.

30

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating System

Case studies:

• (driver) ixbge and NVMe

• (application) Maglev load-balancer and Key-value store

Evaluation:

• (on ixgbe TX and RX) 32 packets batch: on par with DPDK

• (on NVMe) on par with SPDK

• (Maglev) 52% - 74% of DPDK

• (KV store) 61% - 86% of DPDK

31

(OSDI’22) KSplit: Automating Device Driver Isolation

Backward compatible code isolation: automated static analysis on Linux kernel for

kernel isolation.

Motivating example: ixgbe involves 5,782 functions and 900,000+ object fields.

Challenges:

• Large interface boundary: 134+81 functions between kernel and ixgbe.

• Complex data exchange: only a small subset of struct fields are shared.

• Low-level kernel/C idioms: ptrs, tagged unions, sized and sentinel array ...

• Concurrency primitives: spin/mutex, atomic ops, RCU, sequential lock ...

https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe ➦ 32

https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe

(OSDI’22) KSplit: Automating Device Driver Isolation

Figure 11: KSplit analysis workflow.

33

Beyond Isolation: a Noob’s

Perspective

(ATC’19) LXDs: Towards Isolation of Kernel Subsystems

ASPLOS’18 → OSDI’18 → ATC’19

Decoration

• Decomposition complexity: unmodified code

• IDL

34

(VEE’20) Lightweight Kernel Isolation with Virtualization and VM Functions

OSDI’19 → ASPLOS’19 → VEE’20

Decoration

• SoK of kernel isolation: execution overhead and decomposition complexity

• Isolation invariant

35

(OSDI’20) RedLeaf: Isolation and Communication in a Safe Operating System

ASPLOS’20 → OSDI’20

Decoration

• SoK of language-based OS

• Fault isolation principles

36

(OSDI’22) KSplit: Automating Device Driver Isolation

ASPLOS’21 → OSDI’21 → SOSP’21 → OSDI’22

Decoration

• Join static analysis with kernel isolation

• Kernel static analysis challenges

37

Takeaway

Takeaway

• Isolation challenges: execution overhead + decomposition complexity.

• All 4 papers are not smoothly accepted → a rational schedule is important.

• All 4 papers is not that “perfect” → do not get stuck in trivial points.

• Logic outline is more appealing than loosely-organized narrative.

38

References i

Bareflank.

Bareflank hypervisor - lightweight hypervisor sdk written in c++ with

support for windows, linux and uefi.

https://github.com/Bareflank/hypervisor, 2022.

A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Schüpbach, and A. Singhania.

The multikernel: a new os architecture for scalable multicore systems.

In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, pages 29–44, 2009.

https://github.com/Bareflank/hypervisor

References ii

S. Boyd-Wickizer and N. Zeldovich.

Tolerating malicious device drivers in linux.

In 2010 USENIX Annual Technical Conference (USENIX ATC 10), 2010.

G. Chen, H. Jin, D. Zou, B. B. Zhou, Z. Liang, W. Zheng, and X. Shi.

Safestack: Automatically patching stack-based buffer overflow

vulnerabilities.

IEEE Transactions on Dependable and Secure Computing, 10(6):368–379, 2013.

References iii

P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco, and

A. Warfield.

Breaking up is hard to do: security and functionality in a commodity

hypervisor.

In Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, pages 189–202, 2011.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,

Q. Zhang, and H. Hinton.

Stackguard: automatic adaptive detection and prevention of

buffer-overflow attacks.

In USENIX security symposium, volume 98, pages 63–78. San Antonio, TX, 1998.

References iv

K. Elphinstone and G. Heiser.

From l3 to sel4 what have we learnt in 20 years of l4 microkernels?

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 133–150, 2013.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M. Williamson, et al.

Safe hardware access with the xen virtual machine monitor.

In 1st Workshop on Operating System and Architectural Support for the on

demand IT InfraStructure (OASIS), pages 1–1. Boston, USA;, 2004.

References v

M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and

M. Marty.

Hodor:{Intra-Process} isolation for {High-Throughput} data plane libraries.

In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 489–504,

2019.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer.

Block oriented programming: Automating data-only attacks.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, pages 1868–1882, 2018.

References vi

K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos.

No need to hide: Protecting safe regions on commodity hardware.

In Proceedings of the Twelfth European Conference on Computer Systems, pages

437–452, 2017.

V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.

Code-pointer integrity.

In The Continuing Arms Race: Code-Reuse Attacks and Defenses, pages 81–116.

2018.

References vii

Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek.

Software fault isolation with api integrity and multi-principal modules.

In Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, pages 115–128, 2011.

R. Nikolaev and G. Back.

Virtuos: An operating system with kernel virtualization.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 116–132, 2013.

References viii

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim.

libmpk: Software abstraction for intel memory protection keys (intel

{MPK}).
In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 241–254,

2019.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.

On the effectiveness of address-space randomization.

In Proceedings of the 11th ACM conference on Computer and communications

security, pages 298–307, 2004.

References ix

L. Soares and M. Stumm.

{FlexSC}: Flexible system call scheduling with {Exception-Less} system

calls.

In 9th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 10), 2010.

Y. Sun and T.-c. Chiueh.

Side: Isolated and efficient execution of unmodified device drivers.

In 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), pages 1–12. IEEE, 2013.

References x

M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers.

Nooks: An architecture for reliable device drivers.

In Proceedings of the 10th workshop on ACM SIGOPS European workshop, pages

102–107, 2002.

A. van de Ven.

New security enhancements in red hat enterprise linux v. 3, update 3.

Raleigh, North Carolina, USA: Red Hat, 2004.

L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero.

Codoms: Protecting software with code-centric memory domains.

ACM SIGARCH Computer Architecture News, 42(3):469–480, 2014.

References xi

E. Witchel, J. Rhee, and K. Asanović.

Mondrix: Memory isolation for linux using mondriaan memory protection.

In Proceedings of the twentieth ACM symposium on Operating systems principles,

pages 31–44, 2005.

J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis,

B. Laurie, P. G. Neumann, R. Norton, and M. Roe.

The cheri capability model: Revisiting risc in an age of risk.

In 2014 ACM/IEEE 41st International Symposium on Computer Architecture

(ISCA), pages 457–468. IEEE, 2014.

References xii

W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou.

{FUZE}: Towards facilitating exploit generation for kernel

{Use-After-Free} vulnerabilities.

In 27th USENIX Security Symposium (USENIX Security 18), pages 781–797, 2018.

	Background
	Research Project Review
	Beyond Isolation: a Noob's Perspective
	Takeaway
	Appendix

